
1

Chapitre 13 - Piles et Files

Dans ce chapitre nous allons décrire des structures de données linéaires appelées listes, dont nous verrons deux

formes restreintes très efficaces : les piles et les files.

1- LES PILES :

Les piles (stacks en anglais) correspondent exactement à la notion de pile dans la vie courante :

• Une pile de cartes,

• Une pile d’assiettes…

Pour ajouter un élément on l’empile, il se retrouve donc au-

dessus, et pour retirer un élément, on ne peut retirer que

l’élément se trouvant au sommet de la pile.

En anglais on dit last in, first out ou LIFO pour dire « dernier

arrivé, premier sorti ».

Ce type de structure de données est par exemple utilisé dans :

• les éditeurs avec la fonction Annuler (CTRL+Z)

• les navigateurs pour reculer d’une page.

On étudiera plus tard d’autres cas d’utilisation, par exemple dans la recherche d’éléments stockés dans des

arbres ou des graphes et pour l’exécution des fonctions récursives.

a. IMPLEMENTATION EN PYTHON :

Afin de pouvoir utiliser cette structure de donnée, on peut créer une classe Pile qui utilisera une liste

python. Avec la fonction len() et les méthodes natives de python append() et pop(), on pourra créer

d’autres méthodes qui permettront de réaliser les actions suivantes sur un objet de cette classe Pile :

• « Empiler » : ajoute un élément sur la pile. Le terme anglais correspondant est push.

• « Dépiler » : enlève un élément de la pile et le renvoie. Le terme anglais correspondant est

pop.

• « La pile est-elle vide ? » : renvoie vrai si la pile est vide, faux sinon.

• « Nombre d'éléments de la pile » : renvoie le nombre d'éléments dans la pile.

• « Quel est l'élément de tête ? » : renvoie l'élément de tête sans le dépiler. Le terme anglais

correspondant est peek ou top.

• « Vider la pile » : dépiler tous les éléments. Le terme anglais correspondant est clear.

Par exemple, pour obtenir la pile ci-

contre et dont le contenu correspond

à un historique de navigation, on

exécuterait :

2

Pour tester la méthode estVide(), on pourrait exécuter dans la console :

Pour tester la méthode depiler(), on pourrait

exécuter dans la console :

Pour tester la méthode taille(), on pourrait exécuter dans la console :

Pour tester la méthode sommet(), on pourrait exécuter dans la

console :

Pour tester la méthode vider(), on pourrait

exécuter dans la console :

b. EXERCICE TYPE BAC (2019) : On considère une pile nommé P.

Question 1 : On suppose dans cette question que le

contenu de la pile P est celui donné ci-contre (les

éléments étant empilés par le haut). Donner ci-dessous

le code python qui permet de créer et de remplir P :

Question 2 : Quel sera le contenu de la pile Q après exécution

de la suite d’instructions suivante ?

L’élement au sommet de la pile est

est retourné

Cet élément est retiré de la pile

Le booléen False est retourné

Le nombre d’élément de la pile est retourné

L’élément au sommet de la pile est retourné

3

Question 3 : On donne ci-contre le script de la

méthode maxPile(). Elle a comme paramètre un

entier i. Elle renvoie la position j de l’élément

maximum parmi les i derniers éléments empilés de la

pile P. Après appel de cette fonction, la pile P retrouve

son état d’origine. La position du sommet de la pile

est 1.

Pour la pile P donnée ci-contre, l’exécution de cette

méthode avec comme argument l’entier 2, renvoie la

valeur 1 :

Compléter ci-dessous le contenu des piles P et Q au

cours de l’exécution de :

Question 4 : Compléter la méthode retourner() ayant pour paramètres un entier j.

Cette méthode inverse l’ordre des j derniers éléments empilés et ne renvoie rien.

On pourra utiliser deux piles auxiliaires. Par exemple, si P est la pile donnée ci-

contre à gauche, après l’appel de P.retourner(3), l’état de la pile P sera celui donné

ci-contre à droite :

Etape 1 :

 P Q

4

2

5

8

Etape 2 :

 P Q

5 2

8 4

Etape 3 :

 P Q

4

2

5

8

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = 4

La valeur retournée est 𝑗𝑀𝑎𝑥 = 1

4

Compléter ci-dessous le contenu des piles P et Q au cours de l’exécution de :

Question 5 : L’objectif de cette question est de trier une pile de crêpes.

On modélise une pile de crêpes par une pile d’entiers représentant le diamètre de chaque crêpe. On

souhaite réordonner les crêpes de la plus grande (placée en bas de la pile) à la plus petite (placée en

haut de la pile). On dispose uniquement d’une spatule que l’on peut insérer dans la pile de crêpes de

façon à retourner l’ensemble des crêpes qui lui sont au-dessus.

Le principe est le suivant :

▪ On recherche la plus grande crêpe.

▪ On retourne la pile à partir de cette crêpe de façon à mettre cette plus grande crêpe

tout en haut de la pile.

▪ On retourne l’ensemble de la pile de façon à ce que cette plus grande crêpe se

retrouve tout en bas.

▪ La plus grande crêpe étant à sa place, on recommence le principe avec le reste de la

pile.

Par exemple :

On donne ci-contre le script de la

méthode triCrepes(). Elle trie la pile P

selon la technique du tri crêpes et ne

renvoie rien.

Ecrire sur le schéma ci-dessus, les

valeurs des entiers i et j pour chacune

des étapes.

Etape 1 :

 P Q R

4

2

5

8

Etape 2 :

 P Q R

 5

 2

8 4

Etape 3 :

 P Q R

 4

 2

8 5

Etape 4 :

 P Q R

5

2

4

8

𝒾 = 4 :

 P P P

6 9 5

3 3 6

9 6 3

5 5 9

𝒾 = 3 :

 P P P

5 6 3

6 5 5

3 3 6

9 9 9

𝒾 = 2 :

 P P P

3 5 3

5 3 5

6 6 6

9 9 9

5

2- LES FILES :

Les files(queues en anglais) correspondent également à la notion

de file dans la vie courante:

• Une file d’attente à la caisse,

• à un feu rouge…

Lorsqu’on ajoute un élément, celui-ci se retrouve à la fin de

la file, et on retire les éléments dans l’ordre dans lequel

ils sont arrivés. En anglais on dit first in, first out ou FIFO

pour dire: premier arrivé premier sorti.

Ce type de structure de données est par exemple utilisé dans :

• Un gestionnaire d’impression pour ordonner l’ordre des impressions.

• Un processeur pour planifier l’ordre des opérations.

• Un serveur web pour ordonner les réponses en fonction de l’ordre des demandes.

a. IMPLEMENTATION EN PYTHON :

Afin de pouvoir utiliser cette structure de donnée, on pourrait créer, à l’image de ce que l’on a fait

pour le cas de la Pile, une classe File qui utiliserait une liste python. On choisit ici de faire autrement

en utilisant plutôt un paradigme de programmation fonctionnelle. On se propose ainsi de créer ici

des fonctions qui permettront de réaliser les actions suivantes :

• « Création d’une file » : renvoie une file vide.

• « Enfiler » : ajoute un élément dans la file. Le terme anglais correspondant est enqueue.

• « Défiler » : renvoie l’élément en tête de la file, et le retire de la file. Le terme anglais

correspondant est dequeue.

• « La file est-elle vide ? » : renvoie « vrai » si la file est vide, « faux » sinon.

• « Nombre d'éléments dans la file » : renvoie le nombre d'éléments dans la file.

• « Tête de la file » : renvoie l’élément qui se trouve en tête de la file

• « Vider la file » : supprimer les éléments qui sont dans la file. Le terme anglais correspondant

est clear.

Par exemple, pour obtenir

la file ci-contre et dont le

contenu correspond à celui

du spooler d’une

imprimante qui doit ici

encore imprimer 3 fichiers,

on exécuterait :

6

Pour tester la fonction est_vide(), on pourrait exécuter dans la console :

Pour tester la fonction defiler(), on

pourrait exécuter dans la console :

Pour tester la fonction taille(), on pourrait exécuter dans la console :

Pour tester la fonction tete(), on

pourrait exécuter dans la console :

Pour tester la fonction vider(), on pourrait exécuter dans la console :

b. EXERCICE TYPE BAC (2022):

« Simon » est un jeu de société électronique de forme

circulaire comportant quatre grosses touches de couleurs

différentes : rouge, vert, bleu et jaune. Le jeu joue une

séquence de couleurs que le joueur doit mémoriser et

répéter ensuite. S’il réussit, une nouvelle couleur est

ajoutée à la fin de la séquence. La nouvelle séquence est

jouée depuis le début et le jeu continue. Dès que le

joueur se trompe, la séquence est vidée et réinitialisée

avec une couleur et une nouvelle partie commence.

7

Question 1 : La fonction ajout() ci-contre est

incomplète. Elle prend en paramètre une file

f contenant déjà une séquence de couleurs.

Après exécution, elle renvoie cette file avec

une couleur en plus, définie aléatoirement.

Compléter ce script.

Exemple d’exécution dans la console :

Question 2 : La fonction afficher_seq() ci-contre prend en

paramètre une file f. Elle permet d’ajouter une nouvelle

couleur à la file et ensuite, d’afficher toutes les couleurs de

la file, une par une, avec une temporisation de 1 s entre

chaque affichage. Exemple d’exécution dans la console :

Pour cette exécution, compléter ci-

dessous le contenu des files f et tmp :

 𝑏 𝑗 𝑗 𝑟

 𝑏

File f :

File tmp :

 𝑏 𝑗 𝑗

 𝑟 𝑏

File f :

File tmp :

 𝑏 𝑗

 𝑗 𝑟 𝑏

File f :

File tmp :

𝑏 𝑗 𝑗 𝑟 𝑏

File f :

File tmp :

 𝑏

 𝑗 𝑗 𝑟 𝑏

File f :

File tmp :

𝑏 𝑗 𝑗 𝑟 𝑏

File f :

File tmp :

8

Question 3 : La fonction

tour_de_jeu() ci-contre

prend en paramètre une

file f. Elle permet de

gérer le déroulement du

jeu.

Exemple

d’exécution dans la

console :

 Donner le contenu des files f et tmp sur la ligne repérée A, aux

endroits indiqués :

3- CONCLUSION :

Pourrait-on faire du code sans ces concepts de Piles ou de Files ?

Oui bien sûr, mais ces outils permettent de penser différemment

son algorithme. Ils peuvent se révéler très efficaces dans

différents cas de figures que l’on découvrira encore, dans la suite

du programme de Nsi.

 𝑗

File f :

File tmp :

 𝑗 𝑗

File f :

File tmp :

 𝑣 𝑗 𝑗

File f :

File tmp :

A

