Chapitre 13 - Piles et Files

Dans ce chapitre nous allons décrire des structures de données linéaires appelées listes, dont nous verrons deux
formes restreintes tres efficaces : les piles et les files.

LES PILES :

Les piles (stacks en anglais) correspondent exactement a la notion de pile dans la vie courante :

1-

Pour ajouter un élément on I'empile, il se retrouve donc au-
dessus, et pour retirer un élément, on ne peut retirer que
I’élément se trouvant au sommet de la pile.

En anglais on dit /ast in, first out ou LIFO pour dire « dernier
arrivé, premier sorti ».

Ce type de structure de données est par exemple utilisé dans :
e les éditeurs avec la fonction Annuler (CTRL+2Z)
e les navigateurs pour reculer d’'une page.

Une pile de cartes,

Une pile d’assiettes... _

Empiler @TEF

Y

LN

On étudiera plus tard d’autres cas d’utilisation, par exemple dans la recherche d’éléments stockés dans des
arbres ou des graphes et pour 'exécution des fonctions récursives.

d. IMPLEMENTATION EN PYTHON :

Afin de pouvoir utiliser cette structure de donnée, on peut créer une classe Pile qui utilisera une liste
python. Avec la fonction len() et les méthodes natives de python append() et pop(), on pourra créer
d’autres méthodes qui permettront de réaliser les actions suivantes sur un objet de cette classe Pile :

Par exemple, pour obtenir la pile ci-
contre et dont le contenu correspond

« Empiler » : ajoute un élément sur la pile. Le terme anglais correspondant est push.

« Dépiler » : enléve un élément de la pile et le renvoie. Le terme anglais correspondant est
pop.

« La pile est-elle vide ? » : renvoie vrai si la pile est vide, faux sinon.

« Nombre d'éléments de la pile » : renvoie le nombre d'éléments dans la pile.

« Quel est I'élément de téte ? » : renvoie I'élément de téte sans le dépiler. Le terme anglais
correspondant est peek ou top.

« Vider la pile » : dépiler tous les éléments. Le terme anglais correspondant est clear.

Etat de 1la pile Historique de navigation

https://www.google.com/
https://www.youtube.com/

| |
| |
a un historique de navigation, on | https://www.lyceebranly.com/ |
| |

exécuterait :

https://www.nsibranly.fr/
p = Pile('Historique de navigation')
p.empiler('https://www.nsibranly.fr/")
p.empiler('https://www.lyceebranly.com/")
p.empiler('https://www.youtube.com/")
p.empiler('https://www.google.com/")
print(p)

Pour tester la méthode estVide(), on pourrait exécuter dans la console :

Le booléen False est retourné

Pour tester la méthode depiler(), on pourrait
exécuter dans la console :

L'élement au sommet de la pile est
est retourné

Cet élément est retiré de la pile

>>> p.estVide()
False

| "https://www.google.com/'

| https://www.youtube.com/ \

>>> p.depiler()

>>> print(p)

Etat de la pile Historique de navigation :

| https://www.lyceebranly.com/ |
| https://www.nsibranly.fr/ \

Pour tester la méthode taille(), on pourrait exécuter dans la console :

Le nombre d’élément de la pile est retourné

Pour tester la méthode sommet(), on pourrait exécuter dans la

console :

L'élément au sommet de la pile est retourné

>>> p.taille()
3

>>> p.sommet()
"https://www.youtube.com/'

Pour tester la méthode vider(), on pourrait
exécuter dans la console :

>>> p.vider()
>>> print(p)

Etat de la pile Historique de navigation

b. EXERCICE TYPE BAC (2019) :

w' (—> On dépile

--+ Sommet de la pile

On empile

contenu de Ia pile P est celui donné ci-contre (les
éléments étant empilés par le haut). Donner ci-dessous
le code python qui permet de créer et de remplir P :

On considere une pile nommé P.

[::j'
—
—

P
1
for

Une pile

00| Ut DD =

Pile("P")
[8,5,2,4]
val in 1 :

P.empiler(val)

de la suite d’mstructlons suivante ?

Etat de la pile Q

Q Pile("Q")
while not P.estVide()
val P.depiler()

Q.empiler(val)

méthode maxPile(). Elle a comme parameétre un
entier i. Elle renvoie la position j de I'élément
maximum parmi les i derniers éléments empilés de la
pile P. Aprés appel de cette fonction, la pile P retrouve
son état d’origine. La position du sommet de la pile
est 1.

Pour la pile P donnée ci-contre, I'exécution de cette
méthode avec comme argument I'entier 2, renvoie la

valeurl: P.maxPile(2)

1
Compléter ci-dessous le contenu des piles P et Q au
cours de I'exécution de P.maxPile(2):

: Etape2: Etape 3:
Q P Q| P Qa
Ll a
2
5 2 5
8 4 8

def maxPile(self,i)
Q = Pile('Q")
j=1
while j <= i:

x = self.depiler()
Q.empiler(x)
if j =1

max = X

jMax = j
elif x > max

max = X

jMax = j
j=31+1

while not Q.estVide():
X = Q.depiler()
self.empiler(x)
return jMax

Cette méthode inverse l'ordre des j derniers éléments empilés et ne renvoie rien.

La valeur retournée est jMax = 1

4 On pourra utiliser deux piles auxiliaires. Par exemple, si P est la pile donnée ci- 5
2 contre a gauche, apres l'appel de P.retourner(3), 'état de la pile P sera celui donné 2
5 ci-contre a droite : 4
] 8
def retourner(self,j):
Q = Pile('Q")
R = Pile('R")
n =1
while n <= j:
X = self.depiler()
Q.empiler(x)
n=n+1

while not Q.estVide():
X = Q.depiler()

[R.empiler(x) |

while not R.estVide():
X = R.depiler()

lself.empiler(x)]|

Compléter ci-dessous le contenu des piles P et Q au cours de I'exécution de >>> P.retourner(3)

| Etapel: . | Etape2: . | Etape3: { | Etape4: i
. P Q R ¢{:P Q R { P Q R i P Q R
|4 . o LS |
2 L 5 o al o2 |
|5 » 2 o 2| 1 0|4 |
8 i8] |4 IR s| 1 ils |

..

On modélise une pile de crépes par une pile d’entiers représentant le diameétre de chaque crépe. On
souhaite réordonner les crépes de la plus grande (placée en bas de la pile) a la plus petite (placée en
haut de la pile). On dispose uniquement d’une spatule que l'on peut insérer dans la pile de crépes de
facon a retourner I'ensemble des crépes qui lui sont au-dessus.
Le principe est le suivant :
= Onrecherche la plus grande crépe.
= Onretourne la pile a partir de cette crépe de facon a mettre cette plus grande crépe
tout en haut de la pile.
= Onretourne I'ensemble de la pile de fagcon a ce que cette plus grande crépe se
retrouve tout en bas.
= laplus grande crépe étant a sa place, on recommence le principe avec le reste de la

pile.
Par exemple

E/L=4- E/L=3: i/L=2: :
P P P | P P P ¢ P P P
el ol [s| i i|s| |e| |3 i il3| |s| |3]
13 3] [e| i ile| |s| |s| i ils| |3| |s]|
19 6 3 F 13 3 6| i il6 6 6| |
s o s| o i il |of |eof i ilel| |9l |9 |

On donne ci-contre le script de la
méthode triCrepes(). Elle trie la pile P

def triCrepes(self)

selon la technique du tri crépes et ne 1 = self.taille ()

renvoie rien. while i > 1

Ecrire sur le sch'emz?\ C|-fjessus, les J - se -L _F . maXPile (l)

valeurs des entiers i et j pour chacune .

des étapes. self.retourner(j)
self.retourner(i)
i=1-1

LES FILES

Les files(queues en anglais) correspondent également a la notion
de file dans la vie courante:

Une file d’attente a la caisse,
e aunfeurouge... \. DEFILER
Lorsqu’on ajoute un élément, celui-ci se retrouve a la fin de ENFILER \

la file, et on retire les éléments dans I’ordre dans lequel
ils sont arrivés. En anglais on dit first in, first out ou FIFO

pour dire: p

remier arrivé premier sorti.

Ce type de structure de données est par exemple utilisé dans :

e Un
e Un
e Un

gestionnaire d’'impression pour ordonner l'ordre des impressions.
processeur pour planifier 'ordre des opérations.
serveur web pour ordonner les réponses en fonction de l'ordre des demandes.

a. IMPLEMENTATION EN PYTHON :

Afin de pouvoir utiliser cette structure de donnée, on pourrait créer, a 'image de ce que l'on a fait

pour

le cas de la Pile, une classe File qui utiliserait une liste python. On choisit ici de faire autrement

en utilisant plutét un paradigme de programmation fonctionnelle. On se propose ainsi de créer ici
des fonctions qui permettront de réaliser les actions suivantes :

« Création d’une file » : renvoie une file vide.

« Enfiler » : ajoute un élément dans la file. Le terme anglais correspondant est enqueue.

« Défiler » : renvoie I'élément en téte de la file, et le retire de la file. Le terme anglais
correspondant est dequeue.

« La file est-elle vide ? » : renvoie « vrai » si la file est vide, « faux » sinon.

« Nombre d'éléments dans la file » : renvoie le nombre d'éléments dans la file.

« Téte de la file » : renvoie I'élément qui se trouve en téte de la file

« Vider la file » : supprimer les éléments qui sont dans la file. Le terme anglais correspondant
est clear.

Par exemple, pourobtenir Ftat de la file Spooler imprimante Epson
la file ci-contre et dont le

contenu correspond a celui

du spooler d’une -> --informatique.docx--memoire.doc--nsi.jpg

impr
enco

imante qui doit ici
re imprimer 3 fichiers,

on exécuterait :

f = creer_file vide()

enfiler(f, 'nsi.jpg')

enfiler(f, 'memoire.doc')

enfiler(f, 'informatique.docx')
afficher(f, 'Spooler imprimante Epson')

Pour tester la fonction est_vide(), on pourrait exécuter dans la console : >>> @ st_vide (f)

False

Pour tester la fonction defiler(), on >>> defiler(f)
pourrait exécuter dans la console : 'nsi.jpg’

>>> afficher(f, 'Spooler imprimante Epson')

Etat de la file Spooler imprimante Epson

Pour tester la fonction taille(), on pourrait exécuter dans la console : >>> taille(f)

2

Pour tester la fonction tete(), on

pourrait exécuter dans la console : |~~~ t?te (1)
"memoire.doc’

>>> afficher(f, 'Spooler imprimante Epson')

Etat de la file Spooler imprimante Epson

Pour tester la fonction vider(), on pourrait exécuter dans la console :

>>> vider(f)
>>> afficher(f, 'Spooler imprimante Epson')

Etat de la file Spooler imprimante Epson

- - -

b. EXERCICE TYPE BAC (2022):

« Simon » est un jeu de société électronique de forme
circulaire comportant quatre grosses touches de couleurs
différentes : rouge, vert, bleu et jaune. Le jeu joue une
séquence de couleurs que le joueur doit mémoriser et
répéter ensuite. S’il réussit, une nouvelle couleur est
ajoutée a la fin de la séquence. La nouvelle séquence est
jouée depuis le début et le jeu continue. Dés que le
joueur se trompe, la séquence est vidée et réinitialisée
avec une couleur et une nouvelle partie commence.

incomplete. Elle prend en parameétre une file
f contenant déja une séquence de couleurs.
Aprées exécution, elle renvoie cette file avec
une couleur en plus, définie aléatoirement.
Compléter ce script.

Exemple d’exécution dans la console :

def ajout(f)

i = randint[(0,3)]

enfiler(|f,couleurs[i]) |

couleurs = ['b','r',"j"','v']

>>> f = creer_file vide()

paramétre une file f. Elle permet d’ajouter une nouvelle
couleur a la file et ensuite, d’afficher toutes les couleurs de
la file, une par une, avec une temporisation de 1 s entre

>>> ajout(f)

>>> ajout(f)

>»>> afficher(f,'f')

Etat de 1la file T :

def affich_seq(f)
tmp = creer_file_vide()
ajout(f)
while not est vide(f):
c = defiler(f)

. - i print(c)
chaque affichage. Exemple d’exécution dans la console : time.sleep(1)
>>> afficher(f,'f') Pour cette exécution, compléter ci- : lenfiler(tmp,;)()
. . while not est_vide(tmp) :
Etat de la file f : | dessouslecontenudesfilesfettmp: enfiler(f,defiler(tmp))
Tt FHef:E { | b { J } J | r
-> --j--j--r--b 5
"""""""" File tmp [| [} | b
>>> affich _seq(f) | T
b PR hletlehlehlsblebletletlehlsblebishlstlshishishiehlstlsishisisisleebet
r File f : | | [b [j] j
] :
j File tmp : | b
b ower 111« [b
>>> afficher(f,'f') | = rozmmmeeeeceeeeeeeeooeioeioiii ooy
File f: | | | [b [
Etat de la file f : ;
Hmtmpzi | | Ji | r | b
> --b--j--j--r--b | T
File f: | | | [b File f - | | | | |
FiIetmp:E ‘ ‘ j [T [b FiIetmp:E b | j | j 1 r | b
Filef:i b | j | j [r [b
File tmp : | | | | |

tour_de_jeu() ci-contre
prend en parametre une
file f. Elle permet de
gérer le déroulement du
jeu.

Exemple
d’exécution dans la
console :

def tour_de jeu(f):
while True :

print("\nSéquence : ")
affich_seq(f)
tmp = creer_file vide()
nb = taille(f)
print(f"{nb} couleur(s) a saisir : ")
while not est vide(f):
c_joueur = input(f"Couleur {l+taille(tmp)} & saisir : ")
c_seq = defiler(f)
if c_joueur == c_seq:
enfiler(tmp, c_seq)
else:
vider(f)
vider(tmp)
if c¢_joueur!= ""
while not est vide(tmp):
enfiler(f, defiler(tmp))
if c_joueur == "" :
print('\nFIN")
return

: print('\nERREUR, nouvelle partie')

Donner le contenu des files f et tmp sur la ligne repérée A, aux

Séquence
]

Séquence
)
]

Couleur 1

a
Couleur 2 a

Séquence
)
]

v
Couleur 1

Couleur 2

S
a
a

Couleur 3 a

Séquence
)
]
v
r

Couleur 1 a
Couleur 2 a

FIN

>>> tour_de_jeu(f)

1 couleur(s) a saisir :
Couleur 1 a saisir : j

2 couleur(s) a saisir :
saisir : j
saisir : j

3 couleur(s) a saisir :
saisir : j
saisir : j
salsir : v

4 couleur(s) a saisir
saisir : j
salsir

endroits indiqués :

4—__

File f :
«-—t @@

File tmp :

File f :
«
File tmp :

3-CONCLUSION

Pourrait-on faire du code sans ces concepts de Piles ou de Files ?
Oui bien sir, mais ces outils permettent de penser différemment
son algorithme. Ils peuvent se révéler trés efficaces dans

différents cas de figures que I'on découvrira encore, dans la suite

du programme de Nsi.

